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An important problem exists in the interpretation of mod-
ern medical research data: Biological understanding and
previous research play little formal role in the interpreta-
tion of quantitative results. This phenomenon is manifest
in the discussion sections of research articles and ulti-
mately can affect the reliability of conclusions. The stan-
dard statistical approach has created this situation by pro-
moting the illusion that conclusions can be produced with
certain “error rates,” without consideration of informa-
tion from outside the experiment. This statistical ap-
proach, the key components of which are P values and
hypothesis tests, is widely perceived as a mathematically
coherent approach to inference. There is little apprecia-
tion in the medical community that the methodology is an
amalgam of incompatible elements, whose utility for sci-
entific inference has been the subject of intense debate
among statisticians for almost 70 years. This article intro-
duces some of the key elements of that debate and traces
the appeal and adverse impact of this methodology to the
P value fallacy, the mistaken idea that a single number can
capture both the long-run outcomes of an experiment and
the evidential meaning of a single result. This argument is
made as a prelude to the suggestion that another measure
of evidence should be used—the Bayes factor, which prop-
erly separates issues of long-run behavior from evidential
strength and allows the integration of background knowl-
edge with statistical findings.
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The past decade has seen the rise of evidence-
based medicine, a movement that has focused

attention on the importance of using clinical studies
for empirical demonstration of the efficacy of med-
ical interventions. Increasingly, physicians are being
called on to assess such studies to help them make
clinical decisions and understand the rationale be-
hind recommended practices. This type of assess-
ment requires an understanding of research methods
that until recently was not expected of physicians.

These research methods include statistical tech-
niques used to assist in drawing conclusions. How-
ever, the methods of statistical inference in current
use are not “evidence-based” and thus have contrib-
uted to a widespread misperception. The mispercep-
tion is that absent any consideration of biological
plausibility and prior evidence, statistical methods
can provide a number that by itself reflects a prob-
ability of reaching erroneous conclusions. This be-
lief has damaged the quality of scientific reasoning
and discourse, primarily by making it difficult to
understand how the strength of the evidence in a
particular study can be related to and combined
with the strength of other evidence (from other
laboratory or clinical studies, scientific reasoning, or
clinical experience). This results in many knowledge
claims that do not stand the test of time (1, 2).

A pair of articles in this issue examines this prob-
lem in some depth and proposes a partial solution.
In this article, I explore the historical and logical
foundations of the dominant school of medical sta-
tistics, sometimes referred to as frequentist statistics,
which might be described as error-based. I explicate
the logical fallacy at the heart of this system and the
reason that it maintains such a tenacious hold on
the minds of investigators, policymakers, and jour-
nal editors. In the second article (3), I present an
evidence-based approach derived from Bayesian sta-
tistical methods, an alternative perspective that has
been one of the most active areas of biostatistical
development during the past 20 years. Bayesian
methods have started to make inroads into medical

See related article on pp 1005-1013 and
editorial comment on pp 1019-1021.

©1999 American College of Physicians–American Society of Internal Medicine 995



journals; Annals, for example, has included a section
on Bayesian data interpretation in its Information
for Authors section since 1 July 1997.

The perspective on Bayesian methods offered
here will differ somewhat from that in previous pre-
sentations in other medical journals. It will focus
not on the controversial use of these methods in
measuring “belief” but rather on how they measure
the weight of quantitative evidence. We will see how
reporting an index called the Bayes factor (which in
its simplest form is also called a likelihood ratio)
instead of the P value can facilitate the integration
of statistical summaries and biological knowledge
and lead to a better understanding of the role of
scientific judgment in the interpretation of medical
research.

An Example of the Problem

A recent randomized, controlled trial of hydro-
cortisone treatment for the chronic fatigue syn-
drome showed a treatment effect that neared the
threshold for statistical significance, P 5 0.06 (4).
The discussion section began, “. . . hydrocortisone
treatment was associated with an improvement in
symptoms . . . This is the first such study . . . to dem-
onstrate improvement with a drug treatment of [the
chronic fatigue syndrome]” (4).

What is remarkable about this paper is how un-
remarkable it is. It is typical of many medical re-
search reports in that a conclusion based on the
findings is stated at the beginning of the discussion.

Later in the discussion, such issues as biological
mechanism, effect magnitude, and supporting stud-
ies are presented. But a conclusion is stated before
the actual discussion, as though it is derived directly
from the results, a mere linguistic transformation of
P 5 0.06. This is a natural consequence of a statis-
tical method that has almost eliminated our ability
to distinguish between statistical results and scien-
tific conclusions. We will see how this is a natural
outgrowth of the “P value fallacy.”

Philosophical Preliminaries

To begin our exploration of the P value fallacy,
we must consider the basic elements of reasoning.
The process that we use to link underlying knowl-
edge to the observed world is called inferential rea-
soning, of which there are two logical types: deduc-
tive inference and inductive inference. In deductive
inference, we start with a given hypothesis (a state-
ment about how nature works) and predict what we
should see if that hypothesis were true. Deduction is
objective in the sense that the predictions about
what we will see are always true if the hypotheses
are true. Its problem is that we cannot use it to
expand our knowledge beyond what is in the hy-
potheses.

Inductive inference goes in the reverse direction:
On the basis of what we see, we evaluate what
hypothesis is most tenable. The concept of evidence
is inductive; it is a measure that reflects back from
observations to an underlying truth. The advantage
of inductive reasoning is that our conclusions about
unobserved states of nature are broader than the
observations on which they are based; that is, we
use this reasoning to generate new hypotheses and
to learn new things. Its drawback is that we cannot
be sure that what we conclude about nature is ac-
tually true, a conundrum known as the problem of
induction (5–7).

From their clinical experience, physicians are
acutely aware of the subtle but critical difference
between these two perspectives. Enumerating the
frequency of symptoms (observations) given the
known presence of a disease (hypothesis) is a
deductive process and can be done by a medical
student with a good medical textbook (Figure 1,
top). Much harder is the inductive art of differential
diagnosis: specifying the likelihood of different dis-
eases on the basis of a patient’s signs, symptoms,
and laboratory results. The deductions are more
certain and “objective” but less useful than the in-
ductions.

The identical issue arises in statistics. Under the
assumption that two treatments are the same (that
is, the hypothesis of no difference in efficacy is
true), it is easy to calculate deductively the fre-

Figure 1. The parallels between the processes of induction and
deduction in medical inference (top) and statistical inference (bot-
tom). D 5 treatment difference.
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quency of all possible outcomes that we could ob-
serve in a study (Figure 1, bottom). But once we
observe a particular outcome, as in the result of a
clinical trial, it is not easy to answer the more
important inductive question, “How likely is it that
the treatments are equivalent?”

In this century, philosophers have grappled with
the problem of induction and have tried to solve or
evade it in several ways. Karl Popper (8) proposed
a philosophy of scientific practice that eliminated
formal induction completely and used only the de-
ductive elements of science: the prediction and fal-
sification components. Rudolf Carnap tried an op-
posite strategy—to make the inductive component
as logically secure as the deductive part (9, 10).
Both were unsuccessful in producing workable mod-
els for how science could be conducted, and their
failures showed that there is no methodologic solu-
tion to the problem of fallible scientific knowledge.

Determining which underlying truth is most likely
on the basis of the data is a problem in inverse
probability, or inductive inference, that was solved
quantitatively more than 200 years ago by the Rev-
erend Thomas Bayes. He withheld his discovery,
now known as Bayes theorem; it was not divulged
until 1762, 20 years after his death (11). Figure 2
shows Bayes theorem in words.

As a mathematical equation, Bayes theorem is
not controversial; it serves as the foundation for
analyzing games of chance and medical screening
tests. However, as a model for how we should think
scientifically, it is criticized because it requires assign-
ing a prior probability to the truth of an idea, a
number whose objective scientific meaning is un-
clear (7, 10, 12). It is speculated that this may be
why Reverend Bayes chose the more dire of the
“publish or perish” options. It is also the reason
why this approach has been tarred with the “sub-
jective” label and has not generally been used by
medical researchers.

Conventional (Frequentist)
Statistical Inference

Because of the subjectivity of the prior probabil-
ities used in Bayes theorem, scientists in the 1920s
and 1930s tried to develop alternative approaches to

statistical inference that used only deductive proba-
bilities, calculated with mathematical formulas that
described (under certain assumptions) the frequency
of all possible experimental outcomes if an experi-
ment were repeated many times (10). Methods based
on this “frequentist” view of probability included an
index to measure the strength of evidence called the
P value, proposed by R.A. Fisher in the 1920s (13),
and a method for choosing between hypotheses,
called a hypothesis test, developed in the early 1930s
by the mathematical statisticians Jerzy Neyman and
Egon Pearson (14). These two methods were incom-
patible but have become so intertwined that they are
mistakenly regarded as part of a single, coherent ap-
proach to statistical inference (6, 15, 16).

The P Value

The P value is defined as the probability, under
the assumption of no effect or no difference (the
null hypothesis), of obtaining a result equal to or
more extreme than what was actually observed (Fig-
ure 3). Fisher proposed it as an informal index to
be used as a measure of discrepancy between the
data and the null hypothesis. It was not part of a
formal inferential method. Fisher suggested that it
be used as part of the fluid, non-quantifiable pro-
cess of drawing conclusions from observations, a
process that included combining the P value in
some unspecified way with background information
(17).

It is worth noting one widely prevalent and par-
ticularly unfortunate misinterpretation of the P
value (18–21). Most researchers and readers think
that a P value of 0.05 means that the null hypothesis
has a probability of only 5%. In my experience
teaching many academic physicians, when physi-Figure 2. Bayes theorem, in words.

Figure 3. The bell-shaped curve represents the probability of every
possible outcome under the null hypothesis. Both a (the type I error
rate) and the P value are “tail areas” under this curve. The tail area for a is
set before the experiment, and a result can fall anywhere within it. The P
value tail area is known only after a result is observed, and, by definition, the
result will always lie on the border of that area.
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cians are presented with a single-sentence summary
of a study that produced a surprising result with
P 5 0.05, the overwhelming majority will confidently
state that there is a 95% or greater chance that the
null hypothesis is incorrect. This is an understand-
able but categorically wrong interpretation because
the P value is calculated on the assumption that the
null hypothesis is true. It cannot, therefore, be a
direct measure of the probability that the null hy-
pothesis is false. This logical error reinforces the
mistaken notion that the data alone can tell us the
probability that a hypothesis is true. Innumerable
authors have tried to correct this misunderstanding
(18, 20). Diamond and Forrester (19) reanalyzed
several large clinical trials, and Brophy and Joseph
(22) revisited the GUSTO (Global Use of Strep-
tokinase and tPA for Occluded Coronary Arteries)
trial to show that the final probability of no effect,
which can be calculated only with Bayesian meth-
ods, can differ greatly from the P value. However,
serious as that issue is, this article will focus on the
subtler and more vexing problems created by using
the P value as it was originally intended: as a mea-
sure of inductive evidence.

When it was proposed, some scientists and stat-
isticians attacked the logical basis and practical util-
ity of Fisher’s P value (23, 24). Perhaps the most
powerful criticism was that it was a measure of
evidence that did not take into account the size of
the observed effect. A small effect in a study with
large sample size can have the same P value as a
large effect in a small study. This criticism is the
foundation for today’s emphasis on confidence in-
tervals rather than P values (25–28). Ironically, the
P value was effectively immortalized by a method
designed to supplant it: the hypothesis testing ap-
proach of Neyman and Pearson.

Hypothesis Tests

Neyman and Pearson saw Fisher’s P value as an
incomplete answer to the problem of developing an
inferential method without Bayes theorem. In their
hypothesis test, one poses two hypotheses about na-
ture: a null hypothesis (usually a statement that
there is a null effect) and an alternative hypothesis,
which is usually the opposite of the null hypothesis
(for example, that there is a nonzero effect). The
outcome of a hypothesis test was to be a behavior,
not an inference: to reject one hypothesis and ac-
cept the other, solely on the basis of the data. This
puts the researcher at risk for two types of errors—
behaving as though two therapies differ when they
are actually the same (also known as a false-positive
result, a type I error, or an a error [Figure 3]) or
concluding that they are the same when in fact they
differ (also known as a false-negative result, a type II
error, or a b error).

This approach has the appeal that if we assume
an underlying truth, the chances of these errors can
be calculated with mathematical formulas, deduc-
tively and therefore “objectively.” Elements of judg-
ment were intended to be used in the hypothesis test:
for example, the choice of false-negative and false-
positive error rates on the basis of the relative seri-
ousness of the two types of error (12, 14, 29). Today,
these judgments have unfortunately disappeared.

The hypothesis test represented a dramatic change
from previous methods in that it was a procedure
that essentially dictated the actions of the re-
searcher. Mathematically and conceptually, it was
an enormous step forward, but as a model for sci-
entific practice, it was problematic. In particular, it
did not include a measure of evidence; no number
reflected back from the data to the underlying hy-
potheses. The reason for this omission was that any
inductive element would inevitably lead back to
Bayes theorem, which Neyman and Pearson were
trying to avoid. Therefore, they proposed another
goal of science: not to reason inductively in single
experiments but to use deductive methods to limit
the number of mistakes made over many different
experiments. In their words (14),

no test based upon a theory of probability can by itself
provide any valuable evidence of the truth or false-
hood of a hypothesis.

But we may look at the purpose of tests from another
viewpoint. Without hoping to know whether each sep-
arate hypothesis is true or false, we may search for
rules to govern our behaviour with regard to them, in
following which we insure that, in the long run of
experience, we shall not often be wrong.

It is hard to overstate the importance of this
passage. In it, Neyman and Pearson outline the
price that must be paid to enjoy the purported
benefits of objectivity: We must abandon our ability
to measure evidence, or judge truth, in an individual
experiment. In practice, this meant reporting only
whether or not the results were statistically signifi-
cant and acting in accordance with that verdict.
Many might regard this as profoundly nonscientific,
yet this procedure is often held up as a paradigm of
the scientific method.

Hypothesis tests are equivalent to a system of
justice that is not concerned with which individual
defendant is found guilty or innocent (that is,
“whether each separate hypothesis is true or false”)
but tries instead to control the overall number of
incorrect verdicts (that is, “in the long run of expe-
rience, we shall not often be wrong”). Controlling
mistakes in the long run is a laudable goal, but just
as our sense of justice demands that individual per-
sons be correctly judged, scientific intuition says that
we should try to draw the proper conclusions from
individual studies.
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The hypothesis test approach offered scientists a
Faustian bargain—a seemingly automatic way to
limit the number of mistaken conclusions in the
long run, but only by abandoning the ability to
measure evidence and assess truth from a single
experiment. It is doubtful that hypothesis tests
would have achieved their current degree of accep-
tance if something had not been added that let
scientists mistakenly think they could avoid that
trade-off. That something turned out to be Fisher’s
“P value,” much to the dismay of Fisher, Neyman,
Pearson, and many experts on statistical inference
who followed.

The P Value “Solution”

How did the P value seem to solve an insoluble
problem? It did so in part by appearing to be a
measure of evidence in a single experiment that did
not violate the long-run logic of the hypothesis test.
Figure 3 shows how similar the P value and the a
value (the false-positive error rate) appear. Both are
tail-area probabilities under the null hypothesis. The
tail area corresponding to the false-positive error
rate (a) of the hypothesis test is fixed before the
experiment begins (almost always at 0.05), whereas
the P value tail area starts from a point determined
by the data. Their superficial similarity makes it
easy to conclude that the P value is a special kind of
false-positive error rate, specific to the data in hand.
In addition, using Fisher’s logic that the P value
measured how severely the null hypothesis was con-
tradicted by the data (that is, it could serve as a
measure of evidence against the null hypothesis), we
have an index that does double duty. It seems to be
a Neyman–Pearson data-specific, false-positive error
rate and a Fisher measure of evidence against the
null hypothesis (6, 15, 17).

A typical passage from a standard biostatistics
text, in which the type I error rate is called a
“significance level,” shows how easily the connection
between the P value and the false-positive error rate
is made (30):

The statement “P , 0.01” indicates that the discrep-
ancy between the sample mean and the null hypothesis
mean is significant even if such a conservative signifi-
cance level as 1 percent is adopted. The statement
“P 5 0.006” indicates that the result is significant at
any level up to 0.6 percent.

The plausibility of this dual evidence/error-rate
interpretation is bolstered by our intuition that the
more evidence our conclusions are based on, the
less likely we are to be in error. This intuition is
correct, but the question is whether we can use a
single number, a probability, to represent both the
strength of the evidence against the null hypothesis

and the frequency of false-positive error under the
null hypothesis. If so, then Neyman and Pearson
must have erred when they said that we could not
both control long-term error rates and judge
whether conclusions from individual experiments
were true. But they were not wrong; it is not logi-
cally possible.

The P Value Fallacy

The idea that the P value can play both of these
roles is based on a fallacy: that an event can be
viewed simultaneously both from a long-run and a
short-run perspective. In the long-run perspective,
which is error-based and deductive, we group the
observed result together with other outcomes that
might have occurred in hypothetical repetitions of
the experiment. In the “short run” perspective,
which is evidential and inductive, we try to eval-
uate the meaning of the observed result from a
single experiment. If we could combine these per-
spectives, it would mean that inductive ends
(drawing scientific conclusions) could be served
with purely deductive methods (objective proba-
bility calculations).

These views are not reconcilable because a given
result (the short run) can legitimately be included in
many different long runs. A classic statistical puzzle
demonstrating this involves two treatments, A and
B, whose effects are contrasted in each of six pa-
tients. Treatment A is better in the first five patients
and treatment B is superior in the sixth patient.
Adopting Royall’s formulation (6), let us imagine
that this experiment were conducted by two inves-
tigators, each of whom, unbeknownst to the other,
had a different plan for the experiment. An inves-
tigator who originally planned to study six patients
would calculate a P value of 0.11, whereas one who
planned to stop as soon as treatment B was pre-
ferred (up to a maximum of six patients) would
calculate a P value of 0.03 (Appendix). We have the
same patients, the same treatments, and the same
outcomes but two very different P values (which
might produce different conclusions), which differ
only because the experimenters have different
mental pictures of what the results could be if the
experiment were repeated. A confidence interval
would show this same behavior.

This puzzling and disturbing result comes from
the attempt to describe long-run behavior and short-
run meaning by using the same number. Figure 4
illustrates all of the outcomes that could have oc-
curred under the two investigators’ plans for the
experiment: that is, in the course of the long run of
each design. The long runs of the two designs differ
greatly and in fact have only two possible results in
common: the observed one and the six treatment A
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preferences. When we group the observed result
with results from the different long runs, we get two
different P values (Appendix).

Another way to explain the P value fallacy is that
a result cannot at the same time be an anonymous
(interchangeable) member of a group of results (the
long-run view) and an identifiable (unique) member
(the short-run view) (6, 15, 31). In my second article
in this issue, we will see that if we stick to the
short-run perspective when measuring evidence,
identical data produce identical evidence regardless
of the experimenters’ intentions.

Almost every situation in which it is difficult to
calculate the “correct” P value is grounded in this
fundamental problem. The multiple comparisons de-
bate is whether a comparison should be considered
part of a group of all comparisons made (that is, as
an anonymous member) or separately (as an iden-
tifiable member) (32–35). The controversy over how
to cite a P value when a study is stopped because of
a large treatment effect is about whether we con-
sider the result alone or as part of all results that
might have arisen from such monitoring (36–39). In
a trial of extracorporeal membrane oxygenation in
infants, a multitude of P values were derived from
the same data (40). This problem also has implica-
tions for the design of experiments. Because fre-
quentist inference requires the “long run” to be
unambiguous, frequentist designs need to be rigid
(for example, requiring fixed sample sizes and pre-
specified stopping rules), features that many regard
as requirements of science rather than as artifacts of
a particular inferential philosophy.

The P value, in trying to serve two roles, serves
neither one well. This is seen by examining the
statement that “a result with P 5 0.05 is in a
group of outcomes that has a 5% chance of oc-

curring under the null hypothesis.” Although that
is literally the case, we know that the result is not
just in that group (that is, anonymous); we know
where it is, and we know that it is the most
probable member (that is, it is identifiable). It is
in that group in the same way that a student who
ranks 10 out of 100 is in the top 10% of the class,
or one who ranks 20th is in the top 20% (15).
Although literally true, these statements are decep-
tive because they suggest that a student could be
anywhere in a top fraction when we know he or she
is at the lowest level of that top group. This same
property is part of what makes the P value an
inappropriate measure of evidence against the null
hypothesis. As will be explored in some depth in the
second article, the evidential strength of a result
with a P value of 0.05 is actually much weaker than
the number 0.05 suggests.

If the P value fallacy were limited to the realm of
statistics, it would be a mere technical footnote,
hardly worth an extended exposition. But like a
single gene whose abnormality can disrupt the func-
tioning of a complex organism, the P value fallacy
allowed the creation of a method that amplified the
fallacy into a conceptual error that has profoundly
influenced how we think about the process of sci-
ence and the nature of scientific truth.

Creation of a Combined Method

The structure of the P value and the subtlety of
the fallacy that it embodied enabled the combina-
tion of the hypothesis test and P value approaches.
This combination method is characterized by setting
the type I error rate (almost always 5%) and power
(almost always $80%) before the experiment, then
calculating a P value and rejecting the null hypoth-
esis if the P value is less than the preset type I error
rate.

The combined method appears, completely de-
ductively, to associate a probability (the P value)
with the null hypothesis within the context of a
method that controls the chances of errors. The key
word here is probability, because a probability has
an absoluteness that overwhelms caveats that it is
not a probability of truth or that it should not be
used mechanically. Such features as biological plau-
sibility, the cogency of the theory being tested, and
the strength of previous results all become mere
side issues of unclear relevance. None of these
change the probability, and the probability does not
need them for interpretation. Thus, we have an
objective inference calculus that manufactures con-
clusions seemingly without paying Neyman and
Pearson’s price (that is, that it not be used to draw
conclusions from individual studies) and without

Figure 4. Possible outcomes of two hypothetical trials in six pa-
tients (Appendix). The only possible overlapping results are the observed
data and the result in which treatment A was preferred in all patients.
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Fisher’s flexibility (that is, that background knowl-
edge be incorporated).

In didactic articles in the biomedical literature,
the fusion of the two approaches is so complete that
sometimes no combination is recognized at all; the
P value is identified as equivalent to the chance of
a false-positive error. In a tutorial on statistics for
surgeons, under the unwittingly revealing subhead-
ing of “Errors in statistical inference,” we are told
that “Type I error is incurred if Ho [the null hy-
pothesis] is falsely rejected, and the probability of
this corresponds to the familiar P-value” (41).

The originators of these approaches—Fisher,
Neyman, and Pearson—were acutely aware of the
implications of their methods for science, and while
they each fought for their own approaches in a
debate characterized by rhetorical vehemence and
sometimes personal attacks (15, 16), neither side
condoned the combined method. However, the two
approaches somehow were blended into a received
method whose internal inconsistencies and concep-
tual limitations continue to be widely ignored. Many
sources on statistical theory make the distinctions
outlined here (42–45), but in applied texts and
medical journals, the combined method is typically
presented anonymously as an abstract mathematical
truth, rarely with a hint of any controversy. Of note,
because the combined method is not a coherent
body of ideas, it has been adapted in different forms
in diverse applied disciplines, such as psychology,
physics, economics, and genetic epidemiology (16).

A natural question is, What drove this method to
be so widely promoted and accepted within medi-
cine and other disciplines? Although the scholarship
addressing that question is not yet complete, recent
books by Marks (46), Porter (47), Matthews (48),
and Gigerenzer and colleagues (16) have identified
roles for both scientific and sociologic forces. It is a
complex story, but the basic theme is that therapeu-
tic reformers in academic medicine and in govern-
ment, along with medical researchers and journal
editors, found it enormously useful to have a quan-
titative methodology that ostensibly generated con-
clusions independent of the persons performing the
experiment. It was believed that because the methods
were “objective,” they necessarily produced reliable,
“scientific” conclusions that could serve as the bases
for therapeutic decisions and government policy.

This method thus facilitated a subtle change in
the balance of medical authority from those with
knowledge of the biological basis of medicine to-
ward those with knowledge of quantitative methods,
or toward the quantitative results alone, as though
the numbers somehow spoke for themselves. This is
manifest today in the rise of the evidence-based
medicine paradigm, which occasionally raises hack-
les by suggesting that information about biological

mechanisms does not merit the label “evidence”
when medical interventions are evaluated (49–51).

Implications for Interpretation of
Medical Research

This combined method has resulted in an auto-
maticity in interpreting medical research results that
clinicians, statisticians, and methodology-oriented
researchers have decried over the years (18, 52–68).
As A.W.F. Edwards, a statistician, geneticist, and
protégé of R.A. Fisher, trenchantly observed,

What used to be called judgment is now called preju-
dice, and what used to be called prejudice is now
called a null hypothesis . . . it is dangerous nonsense
(dressed up as the ‘scientific method’) and will cause
much trouble before it is widely appreciated as such
(69).

Another statistician worried about the “unintention-
al brand of tyranny” that statistical procedures ex-
ercise over other ways of thinking (70).

The consequence of this “tyranny” is weakened
discussion sections in research articles, with back-
ground information and previous empirical evidence
integrated awkwardly, if at all, with the statistical
results. A recent study of randomized, controlled
trials reported in major medical journals showed
that very few referred to the body of previous evi-
dence from such trials in the same field (71). This is
the natural result of a methodology that suggests
that each study alone generates conclusions with
certain error rates instead of adding evidence to
that provided by other sources and other studies.

The example presented at the start of this article
was not chosen because it was unusually flawed but
because it was a typical example of how this prob-
lem manifests in the medical literature. The state-
ment that there was a relation between hydrocorti-
sone treatment and improvement of the chronic
fatigue syndrome was a knowledge claim, an induc-
tive inference. To make such a claim, a bridge must
be constructed between “P 5 0.06” and “treatment
was associated with improvement in symptoms.”
That bridge consists of everything that the authors
put into the latter part of their discussion: the mag-
nitude of the change (small), the failure to change
other end points, the absence of supporting studies,
and the weak support for the proposed biological
mechanism. Ideally, all of this other information
should have been combined with the modest statis-
tical evidence for the main end point to generate a
conclusion about the likely presence or absence of a
true hydrocortisone effect. The authors did recom-
mend against the use of the treatment, primarily
because the risk for adrenal suppression could out-
weigh the small beneficial effect, but the claim for
the benefit of hydrocortisone remained.
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Another interesting feature of that presentation
was that the magnitude of the P value seemed to
play almost no role. The initial conclusion was
phrased no differently than if the P value had been
less than 0.001. This omission is the legacy of the
hypothesis test component of the combined method
of inference. The authors (and journal) are to be
lauded for not hewing rigidly to hypothesis test
logic, which would dismiss the P value of 0.06 as
nonsignificant, but if one does not use the hypoth-
esis test framework, conclusions must incorporate
the graded nature of the evidence. Unfortunately,
even Fisher could offer little guidance on how the
size of a P value should affect a conclusion, and
neither has anyone else. In contrast, we will see in
the second article how Bayes factors offer a natural
way to incorporate different grades of evidence into
the formation of conclusions.

In practice, what is most often done to make the
leap from evidence to inference is that different
verbal labels are assigned to P values, a practice
whose incoherence is most apparent when the “sig-
nificance” verdict is not consistent with external ev-
idence or the author’s beliefs. If a P value of 0.12 is
found for an a priori unsuspected difference, an
author often says that the groups are “equivalent”
or that there was “no difference.” But the same P
value found for an expected difference results in the
use of words such as “trend” or “suggestion,” a
claim that the study was “not significant because of
small sample size,” or an intensive search for alter-
native explanations. On the other hand, an unex-
pected result with a P value of 0.01 may be declared
a statistical fluke arising from data dredging or
perhaps uncontrolled confounding. Perhaps worst is
the practice that is most common: accepting at face
value the significance verdict as a binary indicator of
whether or not a relation is real. What drives all of
these practices is a perceived need to make it ap-
pear that conclusions are being drawn directly from
the data, without any external influence, because
direct inference from data to hypothesis is thought
to result in mistaken conclusions only rarely and is
therefore regarded as “scientific.” This idea is rein-
forced by a methodology that puts numbers—a
stamp of legitimacy—on that misguided approach.

Many methodologic disputes in medical research,
such as those around multiple comparisons, whether
a hypothesis was thought of before or after seeing
the data, whether an endpoint is primary or second-
ary, or how to handle multiple looks at accumulating
data, are actually substantive scientific disagreements
that have been converted into pseudostatistical de-
bates. The technical language and substance of
these debates often exclude the investigators who
may have the deepest insight into the biological
issues. A vivid example is found in a recent series of

articles reporting on a U.S. Food and Drug Admin-
istration committee debate on the approval of
carvedilol, a cardiovascular drug, in which the dis-
cussion focused on whether (and which) statistical
“rules” had been broken (72–74). Assessing and
debating the cogency of disparate real-world sources
of laboratory and clinical evidence are the heart of
science, and conclusions can be drawn only when
that assessment is combined with statistical results.
The combination of hypothesis testing and P values
offers no way to accomplish this critical task.

Proposed Solutions

Various remedies to the problems discussed thus
far have been proposed (18, 52–67). Most involve
more use of confidence intervals and various allot-
ments of common sense. Confidence intervals, de-
rived from the same frequentist mathematics as hy-
pothesis tests, represent the range of effects that are
“compatible with the data.” Their chief asset is that,
ideally, they push us away from the automaticity of
P values and hypothesis tests by promoting a con-
sideration of the size of the observed effect. They
are cited more often in medical research reports
today than in the past, but their impact on the
interpretation of research is less clear. Often, they
are used simply as surrogates for the hypothesis test
(75); researchers simply see whether they include
the null effect rather than consider the clinical im-
plications of the full range of likely effect size. The
few efforts to eliminate P values from journals in
favor of confidence intervals have not generally
been successful, indicating that researchers’ need
for a measure of evidence remains strong and that
they often feel lost without one (76, 77). But con-
fidence intervals are far from a panacea; they em-
body, albeit in subtler form, many of the same
problems that afflict current methods (78), the most
important being that they offer no mechanism to
unite external evidence with that provided by an
experiment. Thus, although confidence intervals are
a step in the right direction, they are not a solution
to the most serious problem created by frequentist
methods. Other recommended solutions have in-
cluded likelihood or Bayesian methods (6, 19, 20,
79–84). The second article will explore the use of
Bayes factor—the Bayesian measure of evidence—
and show how this approach can change not only
the numbers we report but, more important, how
we think about them.

A Final Note

Some of the strongest arguments in support of
standard statistical methods is that they are a great
improvement over the chaos that preceded them
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and that they have proved enormously useful in
practice. Both of these are true, in part because
statisticians, armed with an understanding of the
limitations of traditional methods, interpret quanti-
tative results, especially P values, very differently
from how most nonstatisticians do (67, 85, 86). But
in a world where medical researchers have access to
increasingly sophisticated statistical software, the
statistical complexity of published research is in-
creasing (87–89), and more clinical care is being
driven by the empirical evidence base, a deeper
understanding of statistics has become too impor-
tant to leave only to statisticians.

Appendix: Calculation of P Value in a Trial
Involving Six Patients

Null hypothesis: Probability that treatment A is bet-
ter 5 1/2

The n 5 6 design: The probability of the observed re-
sult (one treatment B success and five treatment A suc-
cesses) is 6 3 (1/2) 3 (1/2)5. The factor “6” appears
because the success of treatment B could have occurred
in any of the six patients. The more extreme result would
be the one in which treatment A was superior in all six
patients, with a probability (under the null hypothesis) of
(1/2)6. The one-sided P value is the sum of those two
probabilities:

“Stop at first treatment B preference” design: The possi-
ble results of such an experiment would be either a single
instance of preference for treatment B or successively
more preferences for treatment A, followed by a case of
preference for treatment B, up to a total of six instances.
With the same data as before, the probability of the
observed result of 5 treatment A preferences 2 1 treat-
ment B preference would be (1/2)5 3 (1/2) (without the
factor of “6” because the preference for treatment B must
always fall at the end) and the more extreme result would
be six preferences for treatment As, as in the other de-
sign. The one-sided P value is:

Requests for Reprints: Steven Goodman, MD, PhD, Johns Hop-
kins University, 550 North Broadway, Suite 409, Baltimore, MD
21205; e-mail, sgoodman@jhu.edu.
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Toward Evidence-Based Medical Statistics. 2: The Bayes Factor
Steven N. Goodman, MD, PhD

Bayesian inference is usually presented as a method for
determining how scientific belief should be modified by
data. Although Bayesian methodology has been one of
the most active areas of statistical development in the past
20 years, medical researchers have been reluctant to em-
brace what they perceive as a subjective approach to data
analysis. It is little understood that Bayesian methods have
a data-based core, which can be used as a calculus of
evidence. This core is the Bayes factor, which in its simplest
form is also called a likelihood ratio. The minimum Bayes
factor is objective and can be used in lieu of the P value as
a measure of the evidential strength. Unlike P values,
Bayes factors have a sound theoretical foundation and an
interpretation that allows their use in both inference and
decision making. Bayes factors show that P values greatly
overstate the evidence against the null hypothesis. Most
important, Bayes factors require the addition of background
knowledge to be transformed into inferences—probabilities
that a given conclusion is right or wrong. They make the
distinction clear between experimental evidence and infer-
ential conclusions while providing a framework in which to
combine prior with current evidence.
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In the first of two articles on evidence-based sta-
tistics (1), I outlined the inherent difficulties of

the standard frequentist statistical approach to in-
ference: problems with using the P value as a mea-
sure of evidence, internal inconsistencies of the com-
bined hypothesis test–P value method, and how that
method inhibits combining experimental results with
background information. Here, I explore, as non-
mathematically as possible, the Bayesian approach
to measuring evidence and combining information
and epistemologic uncertainties that affect all statis-
tical approaches to inference. Some of this presen-
tation may be new to clinical researchers, but most
of it is based on ideas that have existed at least since
the 1920s and, to some extent, centuries earlier (2).

The Bayes Factor Alternative

Bayesian inference is often described as a
method of showing how belief is altered by data.
Because of this, many researchers regard it as non-
scientific; that is, they want to know what the data
say, not what our belief should be after observing
them (3). Comments such as the following, which ap-

peared in response to an article proposing a Bayesian
analysis of the GUSTO (Global Utilization of Strep-
tokinase and tPA for Occluded Coronary Arteries)
trial (4), are typical.

When modern Bayesians include a “prior probability
distribution for the belief in the truth of a hypothesis,”
they are actually creating a metaphysical model of
attitude change . . . The result . . . cannot be field-tested
for its validity, other than that it “feels” reasonable to
the consumer. . . .

The real problem is that neither classical nor Bayesian
methods are able to provide the kind of answers cli-
nicians want. That classical methods are flawed is un-
deniable—I wish I had an alternative . . . . (5)

This comment reflects the widespread mispercep-
tion that the only utility of the Bayesian approach is
as a belief calculus. What is not appreciated is that
Bayesian methods can instead be viewed as an evi-
dential calculus. Bayes theorem has two compo-
nents—one that summarizes the data and one that
represents belief. Here, I focus on the component
related to the data: the Bayes factor, which in its
simplest form is also called a likelihood ratio. In Bayes
theorem, the Bayes factor is the index through which
the data speak, and it is separate from the purely
subjective part of the equation. It has also been called
the relative betting odds, and its logarithm is some-
times referred to as the weight of the evidence (6, 7).
The distinction between evidence and error is clear
when it is recognized that the Bayes factor (evidence)
is a measure of how much the probability of truth
(that is, 1 2 prob(error), where prob is probability) is
altered by the data. The equation is as follows:

Prior Odds
of Null Hypothesis 3

Bayes
Factor 5

Posterior Odds
of Null Hypothesis

where Bayes factor 5

Prob~Data, given the null hypothesis!

Prob~Data, given the alternative hypothesis!

The Bayes factor is a comparison of how well
two hypotheses predict the data. The hypothesis
that predicts the observed data better is the one
that is said to have more evidence supporting it.
Unlike the P value, the Bayes factor has a sound
theoretical foundation and an interpretation that

See related article on pp 995-1004 and editorial
comment on pp 1019-1021.
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allows it to be used in both inference and decision
making. It links notions of objective probability, ev-
idence, and subjective probability into a coherent
package and is interpretable from all three perspec-
tives. For example, if the Bayes factor for the null
hypothesis compared with another hypothesis is 1/2,
the meaning can be expressed in three ways.

1. Objective probability: The observed results are
half as probable under the null hypothesis as they
are under the alternative.

2. Inductive evidence: The evidence supports the
null hypothesis half as strongly as it does the alter-
native.

3. Subjective probability: The odds of the null
hypothesis relative to the alternative hypothesis af-
ter the experiment are half what they were before
the experiment.

The Bayes factor differs in many ways from a
P value. First, the Bayes factor is not a probability
itself but a ratio of probabilities, and it can vary
from zero to infinity. It requires two hypotheses,
making it clear that for evidence to be against the
null hypothesis, it must be for some alternative.
Second, the Bayes factor depends on the probability
of the observed data alone, not including unobserved
“long run” results that are part of the P value calcu-
lation. Thus, factors unrelated to the data that affect
the P value, such as why an experiment was stopped,
do not affect the Bayes factor (8, 9).

Because we are so accustomed to thinking of
“evidence” and the probability of “error” as synon-
ymous, it may be difficult to know how to deal with
a measure of evidence that is not a probability. It is
helpful to think of it as analogous to the concept of

energy. We know that energy is real, but because it
is not directly observable, we infer the meaning of a
given amount from how much it heats water, lifts a
weight, lights a city, or cools a house. We begin to
understand what “a lot” and “a little” mean through
its effects. So it is with the Bayes factor: It modifies
prior probabilities, and after seeing how much
Bayes factors of certain sizes change various prior
probabilities, we begin to understand what repre-
sents strong evidence, and weak evidence.

Table 1 shows us how far various Bayes factors
move prior probabilities, on the null hypothesis, of
90%, 50%, and 25%. These correspond, respective-
ly, to high initial confidence in the null hypothesis,
equivocal confidence, and moderate suspicion that
the null hypothesis is not true. If one is highly con-
vinced of no effect (90% prior probability of the
null hypothesis) before starting the experiment, a
Bayes factor of 1/10 will move one to being equiv-
ocal (47% probability on the null hypothesis), but if
one is equivocal at the start (50% prior probability),
that same amount of evidence will be moderately con-
vincing that the null hypothesis is not true (9% pos-
terior probability). A Bayes factor of 1/100 is strong
enough to move one from being 90% sure of the
null hypothesis to being only 8% sure.

As the strength of the evidence increases, the
data are more able to convert a skeptic into a
believer or a tentative suggestion into an accepted
truth. This means that as the experimental evidence
gets stronger, the amount of external evidence
needed to support a scientific claim decreases. Con-
versely, when there is little outside evidence sup-
porting a claim, much stronger experimental evidence
is required for it to be credible. This phenomenon can
be observed empirically, in the medical community’s
reluctance to accept the results of clinical trials that
run counter to strong prior beliefs (10, 11).

Bayes Factors and Meta-Analysis

There are two dimensions to the “evidence-based”
properties of Bayes factors. One is that they are a
proper measure of quantitative evidence; this issue
will be further explored shortly. The other is that
they allow us to combine evidence from different
experiments in a natural and intuitive way. To under-
stand this, we must understand a little more of the
theory underlying Bayes factors (12–14).

Every hypothesis under which the observed data
are not impossible can be said to have some evi-
dence for it. The strength of this evidence is pro-
portional to the probability of the data under that
hypothesis and is called the likelihood of the hypoth-
esis. This use of the term “likelihood” must not be
confused with its common language meaning of

Table 1. Final (Posterior) Probability of the Null
Hypothesis after Observing Various Bayes
Factors, as a Function of the Prior Probability of
the Null Hypothesis

Strength
of Evidence

Bayes Factor Decrease in Probability
of the Null Hypothesis

From To No
Less Than

%

Weak 1/5 90 64*
50 17
25 6

Moderate 1/10 90 47
50 9
25 3

Moderate to strong 1/20 90 31
50 5
25 2

Strong to very strong 1/100 90 8
50 1
25 0.3

* Calculations were performed as follows:
A probability (Prob) of 90% is equivalent to an odds of 9, calculated as Prob/(1 2 Prob).
Posterior odds 5 Bayes factor 3 prior odds; thus, (1/5) 3 9 5 1.8.
Probability 5 odds/(1 1 odds); thus, 1.8/2.8 5 0.64.
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probability (12, 13). Mathematical likelihoods have
meaning only when compared to each other in the
form of a ratio (hence, the likelihood ratio), a ratio
that represents the comparative evidential support
given to two hypotheses by the data. The likelihood
ratio is the simplest form of Bayes factor.

The hypothesis with the most evidence for it has
the maximum mathematical likelihood, which means
that it predicts the observed data best. If we observe
a 10% difference between the cure rates of two
treatments, the hypothesis with the maximum like-
lihood would be that the true difference was 10%.
In other words, whatever effect we are measuring,
the best-supported hypothesis is always that the un-
known true effect is equal to the observed effect.
Even when a true difference of 10% gets more
support than any other hypothesis, a 10% observed
difference also gives a true difference of 15% some
support, albeit less than the maximum (Figure).

This idea—that each experiment provides a certain
amount of evidence for every underlying hypothe-
sis—is what makes meta-analysis straightforward un-
der the Bayesian paradigm, and conceptually different
than under standard methods. One merely combines
the evidence provided by each experiment for each
hypothesis. With log Bayes factors (or log likeli-
hoods), this evidence can simply be added up (15–
17).

With standard methods, quantitative meta-analy-
sis consists of taking a weighted average of the ob-
served effects, with weights related to their precision.
For example, if one experiment finds a 10% difference
and another finds a 20% difference, we would average
the numbers 10% and 20%, pool their standard er-
rors, and calculate a new P value based on the average
effect and pooled standard error. The cumulative evi-
dence (P value) for the meta-analytic average has
little relation to the P values for the individual
effects, and averaging the numbers 10% and 20%
obscures the fact that both experiments actually
provide evidence for the same hypotheses, such as a
true 15% difference. Although it might be noted
that a 15% difference falls within the confidence
intervals of both experiments, little can be done
quantitatively or conceptually with that fact. So
while meta-analysts say they are combining evidence
from similar studies, standard methods do not have a
measure of evidence that is directly combined.

Of Bayes Factors and P Values

If we are to move away from P values and to-
ward Bayes factors, it is helpful to have an “ex-
change rate”—a relation between the new unit of
measurement and the old. With a few assumptions,
we can make this connection. First, to compare like

with like, we must calculate the Bayes factor for the
same hypothesis for which the P value is being cal-
culated. The P value is always calculated by using
the observed difference, so we must calculate the
Bayes factor for the hypothesis that corresponds to
the observed difference, which we showed earlier
was the best-supported hypothesis. Second, because
a smaller P value means less support for the null
hypothesis (or more evidence against it), we must
structure the Bayes factor the same way, so that a
smaller Bayes factor also means less support for the
null hypothesis. This means putting the likelihood
of the null hypothesis in the numerator and the
likelihood of an alternative hypothesis in the de-
nominator. (Whether the null hypothesis likelihood
is in the top or bottom of the ratio depends on the
context of use.) If we put the evidence for the
best-supported hypothesis in the denominator, the
resulting ratio will be the smallest possible Bayes
factor with respect to the null hypothesis. This re-
ciprocal of the maximum likelihood ratio is also
called the standardized likelihood. The minimum
Bayes factor (or minimum likelihood ratio) is the
smallest amount of evidence that can be claimed for
the null hypothesis (or the strongest evidence against
it) on the basis of the data. This is an excellent bench-
mark against which to compare the P value.

The simplest relation between P values and
Bayes factors exists when statistical tests are based
on a Gaussian approximation, which is the case for
most statistical procedures found in medical jour-
nals. In that situation, the minimum Bayes factor
(the minimum likelihood ratio) is calculated with
the same numbers used to calculate a P value (13,
18, 19). The formula is as follows (see Appendix I
for derivation):

Minimum Bayes factor 5 e2Z2/2

Figure. Calculation of a Bayes factor (likelihood ratio) for the null
hypothesis versus two other hypotheses: the maximally supported
alternative hypothesis (change D 5 10%) and an alternative hypoth-
esis with less than the maximum support (D 5 15%). The likelihood of
the null hypothesis (L0) divided by the likelihood of the best supported
hypothesis (L10%), is the minimum likelihood ratio or minimum Bayes factor,
the strongest evidence against the null hypothesis. The corresponding ratio
for the hypothesis D 5 15% results in a larger ratio, which means that the
evidence against the null hypothesis is weaker.
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where z is the number of standard errors from the
null effect. This formula can also be used if a t-test
(substituting t for Z) or a chi-square test (substitut-
ing the chi-square value for Z2) is done. The data
are treated as though they came from an experi-
ment with a fixed sample size.

This formula allows us to establish an exchange
rate between minimum Bayes factors and P values
in the Gaussian case. Table 2 shows the minimum
Bayes factor and the standard P value for any given
Z score. For example, when a result is 1.96 standard
errors from its null value (that is, P 5 0.05), the
minimum Bayes factor is 0.15, meaning that the null
hypothesis gets 15% as much support as the best-
supported hypothesis. This is threefold higher than
the P value of 0.05, indicating that the evidence
against the null hypothesis is not nearly as strong as
“P 5 0.05” suggests.

Even when researchers describe results with a P
value of 0.05 as being of borderline significance, the
number “0.05” speaks louder than words, and most
readers interpret such evidence as much stronger
than it is. These calculations show that P values of
0.05 (corresponding to a minimum Bayes factor of
0.15) represent, at best, moderate evidence against
the null hypothesis; those between 0.001 and 0.01
represent, at best, moderate to strong evidence; and
those less than 0.001 represent strong to very strong
evidence. When the P value becomes very small, the
disparity between it and the minimum Bayes factor
becomes negligible, confirming that strong evidence
will look strong regardless of how it is measured.

The right-hand part of Table 2 uses this relation
between P values and Bayes factors to show the
maximum effect that data with various P values

would have on the plausibility of the null hypothe-
sis. If one starts with a chance of no effect of 50%,
a result with a minimum Bayes factor of 0.15 (cor-
responding to a P value of 0.05) can reduce confi-
dence in the null hypothesis to no lower than 13%.
The last row in each entry turns the calculation
around, showing how low initial confidence in the
null hypothesis must be to result in 5% confidence
after seeing the data (that is, 95% confidence in a
non-null effect). With a P value of 0.05 (Bayes
factor $ 0.15), the prior probability of the null hy-
pothesis must be 26% or less to allow one to con-
clude with 95% confidence that the null hypothesis
is false. This calculation is not meant to sanctify the
number “95%” in the Bayesian approach but rather
to show what happens when similar benchmarks are
used in the two approaches.

These tables show us what many researchers
learn from experience and what statisticians have
long known; that the weight of evidence against the
null hypothesis is not nearly as strong as the mag-
nitude of the P value suggests. This is the main rea-
son that many Bayesian reanalyses of clinical trials
conclude that the observed differences are not likely
to be true (4, 20, 21). They conclude this not always
because contradictory prior evidence outweighed
the trial evidence but because the trial evidence,
when measured properly, was not very strong in the
first place. It also provides justification for the judg-
ment of many experienced meta-analysts who have
suggested that the threshold for significance in a
meta-analysis should be a result more than two
standard errors from the null effect rather than two
(22, 23).

The theory underlying these ideas has a long
history. Edwards (2) traces the concept of mathe-
matical likelihood into the 18th century, although
the name and full theoretical development of like-
lihood didn’t occur until around 1920, as part of
R.A. Fisher’s theory of maximum likelihood. This
was a frequentist theory, however, and Fisher did
not acknowledge the value of using the likelihood
directly for inference until many years later (24).
Edwards (14) and Royall (13) have built on some of
Fisher’s ideas, exploring the use of likelihood-based
measures of evidence outside of the Bayesian par-
adigm. In the Bayesian realm, Jeffreys (25) and
Good (6) were among the first to develop the the-
ory behind Bayes factors, with the most comprehen-
sive recent summary being that of Kass (26). The
suggestion that the minimum Bayes factor (or min-
imum likelihood ratio) could be used as a report-
able index appeared in the biomedical literature at
least as early as 1963 (19). The settings in which
Bayes factors differ from likelihood ratios are dis-
cussed in the following section.

Table 2. Relation between Fixed Sample Size P Values
and Minimum Bayes Factors and the Effect of
Such Evidence on the Probability of the Null
Hypothesis

P Value
(Z Score)

Minimum
Bayes Factor

Decrease in Probability of
the Null Hypothesis, %

Strength of
Evidence

From To No Less Than

0.10 0.26 75 44 Weak
(1.64) (1/3.8) 50 21

17 5

0.05 0.15 75 31 Moderate
(1.96) (1/6.8) 50 13

26 5

0.03 0.095 75 22 Moderate
(2.17) (1/11) 50 9

33 5

0.01 0.036 75 10 Moderate to strong
(2.58) (1/28) 50 3.5

60 5

0.001 0.005 75 1 Strong to very strong
(3.28) (1/216) 50 0.5

92 5
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Bayes Factors for Composite Hypotheses

Bayes factors larger than the minimum values
cited in the preceding section can be calculated (20,
25–27). This is a difficult technical area, but it is
important to understand in at least a qualitative way
what these nonminimum Bayes factors measure and
how they differ from simple likelihood ratios.

The definition of the Bayes factor is the proba-
bility of the observed data under one hypothesis di-
vided by its probability under another hypothesis. Typ-
ically, one hypothesis is the null hypothesis of no
difference. The other hypothesis can be stated in many
ways, such as “the cure rates differ by 15%.” That is
called a simple hypothesis because the difference (15%)
is specified exactly. The null hypothesis and best-sup-
ported hypothesis are both simple hypotheses.

Things get more difficult when we state the al-
ternative hypothesis the way it is usually posed: for
example, “the true difference is not zero” or “the
treatment is beneficial.” This hypothesis is called a
composite hypothesis because it is composed of many
simple hypotheses (“The true difference is 1%, 2%,
3%. . . ,”). This introduces a problem when we want
to calculate a Bayes factor, because it requires cal-
culating the probability of those data under the
hypothesis, “The true difference is 1%, 2%, 3%. . . .”
This is where Bayes factors differ from likelihood ra-
tios; the latter are generally restricted to comparisons
of simple hypotheses, but Bayes factors use the ma-
chinery of Bayes theorem to allow measurement of
the evidence for composite hypotheses.

Bayes theorem for composite hypotheses involves
calculating the probability of the data under each
simple hypothesis separately (difference 5 1%, dif-
ference 5 2%, and so on) and then taking an aver-
age. In taking an average, we can weight the com-
ponents in many ways. Bayes theorem tells us to use
weights defined by a prior probability curve. A prior
probability curve represents the plausibility of every
possible underlying hypothesis, on the basis of evi-
dence from sources other than the current study.
But because prior probabilities can differ between
individual persons, different Bayes factors can be
calculated from the same data.

Different Questions, Different Answers

It may seem that the fact that the same data can
produce different Bayes factors undermines the ini-
tial claim that Bayesian methods offer an objective
way to measure evidence. But deeper examination
shows that this fact is really a surrogate for the
more general problem of how to draw scientific
conclusions from the totality of evidence. Applying
different weights to the hypotheses that make up a
composite hypothesis does not mean that different
answers are being produced for the same evidential

question; it means that different questions are being
asked. For example, in the extreme, if we put all of
the weight on treatment differences near 5%, the
question about evidence for a nonzero treatment
difference becomes a question about evidence for a
5% treatment difference alone. An equal weighting
of all hypotheses between 5% and 20% would pro-
vide the average evidence for a difference in that
range, an answer that would differ from the average
evidence for all hypotheses between 1% and 25%,
even though all of these are nonzero differences.

Thus, the problem in defining a unique Bayes
factor (and therefore a unique strength of evidence)
is not with the Bayesian approach but with the fuzzi-
ness of the questions we ask. The question “How
much evidence is there for a nonzero difference?”
is too vague. A single nonzero difference does not
exist. There are many nonzero differences, and our
background knowledge is usually not detailed enough
to uniquely specify their prior plausibility. In prac-
tical terms, this means that we usually do not know
precisely how big a difference to expect if a treat-
ment or intervention “works.” We may have an
educated guess, but this guess is typically diffuse and
can differ among individuals on the basis of the
different background information they bring to the
problem or the different weight that they put on
shared information. If we could come up with gen-
erally accepted reasons that justify a unique plausi-
bility for each underlying truth, these reasons would
constitute a form of explanation. Thus, the most
fundamental of statistical questions—what is the
strength of the evidence?—is related to the funda-
mental yet most uncertain of scientific questions—
how do we explain what we observe?

This fundamental problem—how to interpret and
learn from data in the face of gaps in our substan-
tive knowledge—bedevils all technological approaches
to the problem of quantitative reasoning. The ap-
proaches range from evasion of the problem by con-
sidering results in aggregate (as in hypothesis test-
ing), solutions that leave background information
unquantified (Fisher’s idea for P values), or repre-
sentation of external knowledge in an idealized and
imperfect way (Bayesian methods).

Proposed Solutions
Acknowledging the need for a usable measure of

evidence even when background knowledge is in-
complete, Bayesian statisticians have proposed many
approaches. Perhaps the simplest is to conduct a
sensitivity analysis; that is, to report the Bayes fac-
tors produced by a range of prior distributions, rep-
resenting the attitudes of enthusiasts to skeptics (28,
29). Another solution, closely related, is to report
the smallest Bayes factor for a broad class of prior
distributions (30), which can have a one-to-one re-
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lation with the P value, just as the minimum Bayes
factor does in the Gaussian case (31). Another ap-
proach is to use prior distributions that give roughly
equal weight to each of the simple hypotheses that
make up the composite hypothesis (25, 26, 32), al-
lowing the data to speak with a minimal effect of a
prior distribution. One such index, the Bayesian in-
formation criterion, for which Kass (26) makes a
strong case, is closely related to the minimum Bayes
factor, with a modification for the sample size. Fi-
nally, there is the approach outlined here: not to
average at all, but to report the strongest Bayes
factor against the null hypothesis.

Beyond the Null Hypothesis
Many statisticians and scientists have noted that

testing a hypothesis of exact equivalence (the null
hypothesis) is artificial because it is unlikely to be
exactly true and because other scientific questions
may be of more interest. The Bayesian approach
gives us the flexibility to expand the scope of our
questions to, for example, “What is the evidence
that the treatment is harmful?” instead of “What is
the evidence that the treatment has no effect?”
These questions have different evidential answers
because the question about harm includes all treat-
ment differences that are not beneficial. This
changes the null hypothesis from a simple hypoth-
esis (a difference of 0) into a composite hypothesis
(a difference of zero or less). When this is done,
under certain conditions, the one-sided P value can
reasonably approximate the Bayes factor (33, 34).
That is, if we observe a one-sided P value of 0.03
for a treatment benefit and give all degrees of harm
the same initial credibility as all degrees of benefit,
the Bayes factor for treatment harm compared with
benefit is approximately 0.03. The minimum Bayes
factor for no treatment effect compared with benefit
would still be 0.095 (Table 2).

Objectivity of the Minimum Bayes Factor

The minimum Bayes factor is a unique function
of the data that is at least as objective as the P val-
ue. In fact, it is more objective because it is unaf-
fected by the hypothetical long-run results that can
make the P value uncertain. In the first article (1),
I presented an example in which two different P val-
ues (0.11 and 0.03) were calculated from the same
data by virtue of the different mental models of the
long run held by two researchers. The minimum
Bayes factor would be 0.23, identical for both sci-
entists’ approaches (Appendix 2). This shows us
again how P values can overstate the evidence, but
more important, it vindicates our intuition that the
identical data should produce identical evidence.

This example is important in understanding two
problems that plague frequentist inference: multiple
comparisons and multiple looks, or, as they are more
commonly called, data dredging and peeking at the
data. The frequentist solution to both problems in-
volves adjusting the P value for having looked at the
data more than once or in multiple ways. But ad-
justing the measure of evidence because of consid-
erations that have nothing to do with the data defies
scientific sense (8, 35–41), belies the claim of “ob-
jectivity” that is often made for the P value, and
produces an undesirable rigidity in standard trial
design. From a Bayesian perspective, these problems
and their solutions are viewed differently; they
are caused not by the reason an experiment was
stopped but by the uncertainty in our background
knowledge. The practical result is that experimental
design and analysis is far more flexible with Bayes-
ian than with standard approaches (42).

External Evidence

Prior probability distributions, the Bayesian method
for representing background knowledge, are some-
times derided as representing opinion, but ideally
this opinion should be evidence-based. The body of
evidence used can include almost all of the factors
that are typically presented in a discussion section
but are not often formally integrated with the quan-
titative results. It is not essential that an investigator
know of all of this evidence before an experiment.
This evidence can include the following:

1. The results of similar experiments.
2. Experiments studying associations with similar

underlying mechanisms.
3. Laboratory experiments directly studying the

mechanism of the purported association.
4. Phenomena seen in other experiments that

would be explained by this proposed mechanism.
5. Patterns of intermediate or surrogate end

points in the current experiment that are consistent
with the proposed mechanism.

6. Clinical knowledge based on other patients
with the same disease or on other interventions with
the same proposed mechanism.

Only the first of these types of evidence involves
a simple comparison or summation of results from
similar experiments, as in a meta-analysis. All of the
others involve some form of extrapolation based on
causal reasoning. The use of Bayes factors makes it
clear that this is necessary in order to draw conclu-
sions from the statistical evidence.

Use of the Bayes Factor

We will now use two statements from the results
sections of hypothetical reports to show the mini-
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mum Bayes factor can be used to report and inter-
pret evidence.

Hypothetical Statement 1

The difference in migraine relief rates between
the experimental herbal remedy and placebo groups
(54% compared with 40% [CI for difference, 22%
to 30%]) was not significant (P 5 0.09).

Bayesian data interpretation 1: The P value of 0.09
(Z 5 1.7) for the difference in migraine relief rates
corresponds to a minimum Bayes factor of e21.72/2 5
1⁄4 for the null hypothesis. This means that these
data reduce the odds of the null hypothesis by at
most a factor of 4, fairly modest evidence for the
efficacy of this treatment. For these data to produce
a final null hypothesis probability of 5%, the exter-
nal evidence supporting equivalence must justify a
prior probability of equivalence less than 17%. But
no mechanism has been proposed yet for this herbal
migraine remedy, and all previous reports have con-
sisted of case studies or anecdotal reports of relief.
This a priori support is weak and does not justify a
prior probability less than 50%. The evidence from
this study is therefore insufficient for us to conclude
that the proposed remedy is effective.

Bayesian data interpretation 2: . . . For these data
to produce a final null hypothesis probability of 5%,
the external evidence supporting equivalence must
justify a prior probability of equivalence less than
17%. However, the active agent in this remedy is in
the same class of drugs that have proven efficacy in
migraine treatment, and this agent has been shown
to have similar vasoactive effects both in animal mod-
els and in preclinical studies in humans. Three un-
controlled studies have all shown relief rates in the
range seen here (50% to 60%), and the first small
randomized trial of this agent showed a significant
effect (60% compared with 32%; P 5 0.01). The bio-
logical mechanism and observed empirical evidence
seem to justify a prior probability of ineffectiveness
of 15% to 25%, which this evidence is strong enough
to reduce to 4% to 8%. Thus, the evidence in this
trial, in conjunction with prior findings, is strong
enough for us to conclude that this herbal agent is
likely to be effective in relieving migraine.

Hypothetical Statement 2

Among the 50 outcomes examined for their re-
lation with blood transfusions, only nasopharyngeal
cancer had a significantly elevated rate (relative
risk, 3.0; P 5 0.01).

Bayesian data interpretation: The minimum Bayes
factor for relative risk of 1.0 compared with a rel-
ative risk not equal to 1.0 for nasopharyngeal cancer
is 0.036. This is strong enough to reduce a starting
probability on the null hypothesis from at most 59%
to 5%. However, there is no previous evidence for

such an association or of a biological mechanism to
explain it. In addition, rates of cancers with similar
risk factor profiles and molecular mechanisms were
not elevated, meaning that blood transfusion would
have to produce its effect by means of a mechanism
that differs from any other previously identified causes
of this cancer. Previous studies of blood transfusions
have not reported this association, and there have
been no reports of increased incidence of nasopha-
ryngeal cancer among populations who undergo re-
peated transfusions. Therefore, prior evidence sug-
gests that the probability of the null hypothesis is
substantially higher than 60%. A minimum Bayes
factor of 0.036 means that this result can reduce a
85% prior probability to no lower than 17% and a
95% prior probability to no lower than 41%. There-
fore, more evidence than that provided by this study
is needed to justify a reliable conclusion that blood
transfusion increases the risk for nasopharyngeal
cancer. However, future studies should explore this
relation and its potential mechanisms.

Discussion

The above examples do not nearly represent full
Bayesian interpretation sections, which might use a
range of prior distributions to define a range of
Bayes factors, or use priors that have been elicited
from experts (29, 43, 44). These scenarios do, how-
ever, illustrate a few essential facts. First, this mea-
sure of evidence can usually be easily calculated
from the same information used to calculate a P val-
ue or confidence interval and thus can be implement-
ed without specialized software or extensive statis-
tical expertise. Some expertise is needed to assure
that the Gaussian approximation underlying the for-
mula applies in a particular situation. When it doesn’t
apply, many standard software programs report some
function of the exact likelihood (typically, its loga-
rithm), from which it is not hard for a statistician to
calculate the minimum Bayes factor. Its independence
from prior probabilities can also help overcome the
reluctance of many investigators to abandon what
they regard as objective statistical summaries.

More important, these examples highlight how this
index can help keep the statistical evidence distinct
from the conclusions, while being part of a calculus
that formally links them. The first example showed
how the same quantitative results could be included
in discussions that came to different conclusions. The
explicitness of this process encourages debate about
the strength of the supporting evidence. As outlined
in the first article, standard methods discourage this
because they offer no way to combine supporting ev-
idence with a study’s P values or confidence intervals.

These examples demonstrate how the minimum

15 June 1999 • Annals of Internal Medicine • Volume 130 • Number 12 1011



Bayes factor enables simple threshold Bayesian anal-
yses to be performed without a formal elicitation of
prior probability distributions. One merely has to
argue that the prior probability of the null hypoth-
esis is above or below a threshold value, on the ba-
sis of the evidence from outside the study. If the
strongest evidence against the null hypothesis (the
minimum Bayes factor) is not strong enough to
sufficiently justify a conclusion, then the weaker evi-
dence derived from a Bayes factor from a full Baye-
sian analysis will not be either.

The use of the minimum Bayes factor does not
preclude a formal Bayesian analysis and indeed might
be an entrée to one. Recent reviews and books
outline how full Bayesian analyses can be conducted
and reported (21, 29, 45–50). Bayesian results can
also be extended into formal decision analyses (51).
The availability of user-friendly software for Baye-
sian calculations (52) makes implementation of this
method more practicable now than in the past.

In not using a proper Bayesian prior probability
distribution, the minimum Bayes factor represents a
compromise between Bayesian and frequentist per-
spectives, which can be criticized from both camps.
Some statisticians might deride the minimum Bayes
factor as nothing more than a relabelled P value.
But as I have tried to show, P values and Bayes
factors are far more than just numbers, and moving
to Bayes factors of any kind frees us from the
flawed conceptual framework and improper view of
the scientific method that travels with the P value.

The Bottom Line: Both Perspectives Are
Necessary, but P Values Are Not

Standard frequentist methods are most problem-
atic when used to draw conclusions in a single ex-
periment. Their denial of a formal role for external
information in inference poses serious practical and
logical problems. But Bayesian methods, designed
for inductive inference in single experiments, do not
guarantee that in the long run, conclusions in which
we have 95% confidence will turn out to be true
95% of the time (53). This is because Bayesian
prior probability distributions are not ideal quantita-
tive descriptors of what we know (or what we don’t
know) (54, 55), and Bayes theorem is an imperfect
model for human learning (54, 56). This means that
the frequentist, long-run perspective cannot be com-
pletely ignored, leading many statisticians to empha-
size the importance of using frequentist criteria in the
evaluation of Bayesian and likelihood methods (6, 13,
32, 53), which these methods typically fulfill quite well.

In the end, we must recognize that there is no
automatic method in statistics, as there is not in life,
that allows us both to evaluate individual situations

and know exactly what the long-run consequences
of that evaluation will be. The connection between
inference in individual experiments and the number
of errors we make over time is not found in the P
value or in hypothesis tests. It is found only in
properly assessing the strength of evidence from an
experiment with Bayes factors and uniting this with
a synthesis of all of the other scientific information
that bears on the question at hand. There is no
formula for performing that synthesis, nor is there a
formula for assigning a unique number to it. That is
where room for meaningful scientific discourse lies.

Sir Francis Bacon, the writer and philosopher
who was one of the first inductivists, commented on
the two attitudes with which one can approach na-
ture. His comment could apply to the perspectives
contrasted in these essays: “If we begin with cer-
tainties, we shall end in doubts; but if we begin with
doubts, and are patient with them, we shall end with
certainties” (57). Putting P values aside, Bayesian
and frequentist approaches each provide an essen-
tial perspective that the other lacks. The way in which
we balance their sometimes conflicting demands is
what makes the process of learning from nature cre-
ative, exciting, uncertain, and, most of all, human.

Appendix I

Derivation of the minimum Bayes factor under a Gauss-
ian distribution: The likelihood of a hypothesis given an ob-
served effect, x, is proportional to the probability of x under
that hypothesis. For a Gaussian distribution, the hypothe-
sis typically concerns the mean. The probability of x under
a Gaussian distribution with true mean 5 m and standard
error 5 s, is (where the symbol “u” is read as “given”):

Pr(xu m, s) 5
1

sÎ2p
e

2Sx2m

s
D2

Y2

Because the exponent is negative, the above probabil-
ity is maximized when the exponent is zero, which occurs
when m 5 x (that is, the true mean m equals the observed
effect, x). The likelihood ratio for the null hypothesis (m 5 0)
versus the maximally supported hypothesis (m 5 x) is the
minimum Bayes factor:

Pr(xu m 5 0,s)
Pr(xu m 5 x,s) 5

1
sÎ2p

e
2Sx20

s
D2

Y2

1
sÎ2p

e
2Sx2x

s
D

2

Y2

5 e
2Sx

s
D2

Y2

Because the Z-score is the observed effect, x, divided by
its standard error, s, the final term in the above equation is:

e
2Sx

s
D2Y2 5 e2Z2/2
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Appendix II

In the example posed in the first article (1), two treat-
ments, called A and B, were compared in the same pa-
tients, and the preferred treatment in each patients was
chosen. The two experimenters had different mindsets
while conducting the experiment: one planned to study all
six patients, whereas the other planned to stop as soon as
treatment B was preferred. The first five patients pre-
ferred treatment A, and the sixth preferred treatment B.

The probability of the data under the two hypotheses
is as follows.

Null hypothesis: Probability that treatment A is pre-
ferred 5 1/2

Alternative hypothesis: Probability that treatment A is
preferred 5 5/6

In the “n 5 6” experiment, this ratio is:

6S1

2D
5S1

2D
1Y6S5

6D
5S1

6D
1

5 0.23

The “6” appears above because the preference for treat-
ment B could have occurred in any of the first five pa-
tients or in the sixth patient without a change in the
inference.

In the “stop at first preference for treatment B” ex-
periment, the ratio is:

S1

2D
5S1

2D
1YS5

6D
5S1

6D
1

5 0.23
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Standing Statistics Right Side Up

During the years I taught students about diag-
nostic reasoning, I would begin by explaining

that the sensitivity of a diagnostic test for disease X
is found by measuring how often the test result is
positive in a population of patients, all of whom are
known (by some independent and definitive crite-
rion, the “gold standard“) to have disease X: that is,
by measuring the frequency of true-positive results
in that population. A test that yields positive results
in 95 of 100 diseased patients, for example, has a
sensitivity of 0.95. We would then talk about test
specificity—the likelihood that the same test would
have a false-positive result in a population of pa-
tients known by the gold standard not to have the
disease. A test that yields positive results in 10 of
100 nondiseased patients has a specificity of 0.90.

I would then ask the students to imagine that in
working up a new patient, they have gotten back a
positive result from a test with the above sensitivity
and specificity. What would they tell the patient
about his or her probability of having disease X?
Their answer was almost always “95%.” On the face
of it, that answer seems pretty reasonable: Isn’t that

what you’d expect if a test were capable of detecting
95% of diseased patients? The problem is, it’s
wrong; worse, it actually stands diagnostic reasoning
on its head.

In fact, test sensitivity and specificity are deduc-
tive measurements; they reason down from hypoth-
esis (we assume the truth of the hypothesis that the
patient being tested does, or does not, have the dis-
ease) to data (the likelihood that we will get a
positive test result). The students’ reasoning is up-
side down because what clinicians and patients re-
ally need to know is exactly the inverse. In short,
they need an inductive measurement, a reasoning up
from data (the test result) to hypothesis (that the
patient has the disease).

Stated differently, what clinicians and patients
need is a way to calculate the probability that any
particular test result, positive or negative, is a true
result. It is possible to make that inductive calcula-
tion, but doing so requires combining sensitivity and
specificity to create something called a likelihood
ratio, which is an overall measure of the “evidence”
provided by the test result (positive or negative)
itself. The likelihood ratio is then used to modify
the pretest estimate (the “prior probability”) thatThis paper is also available at http://www.acponline.org.
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the patient has the disease, thereby creating a new
and better post-test estimate—sometimes known as
the test’s predictive value—of the chance that the
patient has the disease. (For obvious reasons, pre-
dictive values are also known as posterior probabili-
ties. Positive predictive values express the post-test
likelihood that disease is present after a positive test
result; negative predictive values indicate the post-
test likelihood that disease is absent after a negative
test result.)

Although the deductive inference in a test’s sen-
sitivity and specificity differs profoundly from the
inductive inference in its predictive values, that dif-
ference is also an extremely subtle one; it was not
widely appreciated in the biomedical literature until
the mid-1970s (1). In a two-part article in this issue
(2, 3), Goodman demonstrates how the standard
statistical methods (sometimes called “frequentist”
statistics) used in analyzing biomedical research,
which we have come to accept as a kind of revealed
truth, also stand statistical inference on its head in
much the same way that students’ initial attempts at
diagnostic reasoning do.

The article by Goodman is not light reading. He
is, however, a true hermeneut, a venerable word
meaning “one who is skilled at interpretation.”
Those who make the effort to understand him will
be rewarded with a number of important, if discon-
certing, insights. Thus, just as clinicians need to
know the likelihood that a particular patient has a
disease given a certain test result, researchers (and
those who read papers describing research) need to
know the likelihood that a hypothesis is true given
the data actually obtained in a particular trial or
experiment. Both of these are inductive inferences.
But, as Goodman points out, researchers generally
resort to an inverse, deductive calculation. That is,
they calculate the probability of finding the results
they actually obtained, plus any more extreme re-
sults, on the assumption that a certain hypothesis is
true (usually the “null hypothesis”—the assumption
that the comparison groups do not differ), a concept
expressed in the all-too-familiar P value.

The P value has been the subject of much criti-
cism because a P value of 0.05 has been frequently
and arbitrarily misused to distinguish a true effect
from lack of effect. Although Goodman does not
disagree with that criticism, his real concerns lie
deeper, and he catalogues for us several more seri-
ous and more convoluted misinterpretations of the
concepts of evidence, error, and testing. These mis-
conceptions are particularly troubling because they
confuse our ability to judge whether, over the long
run of experience with many studies, “we shall not
often be wrong” with our ability to judge the like-
lihood that each separate hypothesis tested in an
individual study is true or false.

Enter Bayes theorem. Unfortunately, those omi-
nous words, with their associations of hazy prior
probabilities and abstruse mathematical formulas,
strike fear into the hearts of most of us, clinician,
researcher, and editor alike. But Bayesian inference
immediately loses much of its menace once we re-
alize that it is, in fact, the exact equivalent of pre-
dictive value, a concept now familiar from its wide
use in diagnostic reasoning. It also helps to under-
stand that, mathematical niceties aside, Bayes theo-
rem is essentially a quantitative description of what
we do, qualitatively, every minute of the day: use
new information inductively to refine our judgments
about the correctness of what we already know. In
fancier language, Bayesian inference says that the
most effective way to develop a new and better
degree of confidence (posterior odds) in our knowl-
edge is to combine our previous confidence, derived
from sources outside a particular test or study (the
prior odds), with the “evidence” from that test or
study itself (the Bayes factor).

The importance of information from outside
sources becomes particularly clear in considering
the impact of a single diagnostic test across the full
spectrum of clinical situations. Thus, the positive
predictive value (posterior probability of disease) of
even a fairly sensitive and specific test might be only
0.1 or 0.2 when that test is used in the “screening
mode,” that is, when the patient being tested is very
unlikely to have the disease in the first place. In this
situation, combining the “evidence”—the likelihood
ratio for a positive test result—with outside infor-
mation—a very low pretest (prior) probability—
changes that probability relatively little, unless the
specificity of the test involved is almost perfect. In
contrast, the positive predictive value of the very
same test might be 0.90 to 0.95 or higher when
testing in the “confirmatory mode,” that is, when
testing is done in a patient who is already strongly
suspected of having the disease. Here, a relatively
high pretest (prior) probability can become substan-
tially higher when it is combined with the evidence
from a test that has even relatively modest specific-
ity. The same test can produce intermediate positive
predictive values when testing is done in the “diag-
nostic mode,” that is, when the pretest (prior) sus-
picion of disease is moderate to begin with.

In like fashion, the use of prior knowledge is
critical in interpreting biomedical studies, and fail-
ure to take it into account can easily lead to serious
misinterpretation of the “evidence.” For example, a
recent meta-analysis found an odds ratio of 1.66 in
favor of the beneficial effects of homeopathic ther-
apies over placebos. The associated 95% CI of 1.33
to 2.08, taken by itself, was interpreted as evidence
that is “not compatible with the hypothesis that the
clinical effects of homeopathy are due to placebo”
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(4). If, however, that evidence is combined with the
minimal plausibility (extremely low prior probabil-
ity) that clinically meaningful biological activity can
result from small doses of pure water, even water
that is shaken in a special way, the resulting poste-
rior level (posterior probability) of confidence in
biological activity remains very low. Explanations
other than biological efficacy are thus likely to ac-
count for the results actually observed (5). Con-
versely, in view of the existing evidence that vitamin
E may protect against coronary heart disease, the
finding, reported in this issue (6), that vitamin E
appears statistically not to prevent ischemic stroke
should be interpreted as ratcheting down the prob-
ability of stroke prevention slightly, rather than
flatly ruling out the possibility of such activity.

Figuring out the best way to combine the evi-
dence from a trial with prior information from
sources outside the trial is an important challenge.
It is also a very difficult one, because we often
weigh outside information subjectively. Goodman
has therefore chosen to focus his discussion primar-
ily on the less controversial and more objective core
of Bayesian inference: the measure of “the evi-
dence” from a trial or study. This measure is ex-
pressed by the Bayes factor, a metric already famil-
iar to many readers in the form of the likelihood
ratio, and one that, in itself, provides logically sound
and statistically meaningful information (3). An im-
portant lesson from this element of his discussion is
that the statistical evidence against a null hypothesis
is usually weaker when the data are interpreted by
using the Bayes factor than when the same data are
interpreted by using the P value approach.

Convinced that inductive inference is both useful
and feasible in interpreting scientific studies, in 1997
we began encouraging authors of manuscripts sub-
mitted to Annals to include Bayesian interpretation
of their results (7). Few have done so, probably
both because frequentist methods are universally
taught, enshrined in statistical software, and expect-
ed by biomedical journals and because researchers
are generally not familiar with alternative methods.
Researchers will be particularly interested in Good-
man’s essay, therefore, because Bayesian principles
can contribute importantly to the design of biomed-

ical studies. These principles include the importance
of an exhaustive search of the existing, prior evidence,
a step that is now often omitted (8), and calculation
of a minimum Bayes factor from the data. But oth-
ers stand to benefit as well from working their way
through his analysis. This includes clinicians, who
are increasingly required to interpret the strength of
evidence from individual studies in making decisions
at the bedside, and medical reporters, who are quick
to seize on the latest individual trial without con-
sidering other available studies, thereby creating a
great deal of unnecessary confusion.

Frequentist statistics can serve a useful purpose,
but their limitations are many and serious. Some
members of the biostatistical community have there-
fore worked long and hard to encourage the medi-
cal researchers and readers to use the Bayesian
approach to statistical inference in the design and
interpretation of their studies. Goodman’s article is
an elegant reflection of those efforts, providing both
an explication of underlying theory and solid sug-
gestions for practice. In our view, this article will
contribute importantly to the task of standing sta-
tistical inference right side up. We recommend it to
our readers’ most serious attention.

Frank Davidoff, MD
Editor

Ann Intern Med. 1999;130:1019-1021.
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