
Of the many honorifics bestowed on the articles in this
historical series, it is doubtful that any have had applied the
best—funny. The rhetorical zest and smiling outrage that Joseph 
Berkson brings to his puncturing of the quasi-religious precepts
of traditional statistics in his classic article1 recalls for me a public
debate I witnessed in the 1980s between a highly respected
statistician and a surgeon clinical-trialist. It was a debate on
issues related to the adjustment of P-values in clinical trials, and
what I remember best was the entrance of the physician in full
surgical regalia; green operating scrubs, face mask, shoe covers,
the whole bit. Playing effectively the role of the ‘aw-shucks, I’m
just a country doc who don’t know nuthin’ ‘bout statistics’ he
parodied traditional statistical precepts so effectively, contrasting
them unfavourably with common-sense judgements, that the
statistician, however meritorious his rebuttal may have been,
was left sputtering, helplessly pounding the lectern.

So it seems with this commentary, which asks in an innocent
yet seemingly unanswerable way, ‘If the population [of people]
is not human, what is it?’ This is the leading edge of an attack
on Fisher’s P-value which should still be required reading for all
students of epidemiology and biostatistics today. The com-
mentary shows us several things. First, it demonstrates just how
old are some current criticisms, often presented as enlightened
insights from a modern era. His first sentence has almost a
nostalgic quality that looks surprising over 60 years later, ‘There
was a time when we did not talk about tests of significance; we
simply did them.’ These words described the future as much as
the pre-1942 past.

Second, although it may not be immediately obvious, the
argument presented here is closely related to ones that underlie
modern recommendations to use CI and even Bayesian methods
in lieu of P-values in biomedical research. Third, Berkson makes
important distinctions between hypothesis testing and signifi-
cance tests that continue to be ignored today. Fourth, and perhaps
most subtly, he brings in a notion of ‘evidence’, a positive, relative
concept that is critical to have on the table as separate and
distinct from the P-value. And finally, he provides modern
statisticians with a model for how to communicate technical
concepts to applied users in an accessible and lively way.

All that said, it must be admitted that Berkson’s critique is
frustratingly incomplete. While he offers a scathing critique of
the P-value, and shows us how standard interpretations
contravene scientific intuition (grounded mainly in appeals to
common sense) he does not offer a real alternative. He does call
for more research, particularly into the meaning of what he
calls ‘middle P’s’. It is in this gap that I will spend most of my
time in this commentary; linking his insights with the ‘further
research’ that indeed occurred over the succeeding 60 years.

I must start by laying my own cards on the table. I look at
most things statistical through a Bayesian/likelihood lens, a lens
shaped by the writings of Jeffreys,2 Good,3 Savage,4,5

Birnbaum,6 Hacking,7 Cornfield,8,9 Edwards,10 Berger,11 and
Royall.12,13 But during the day I live and breathe P-values, for
much the same reason that inhabitants of London continued
breathing during the Great Fog of 1952; although it produced
high morbidity and mortality, the alternative was even less
attractive. Such is the predicament of those who try to banish 
P-values from epidemiological research, as the founding editor of
the journal Epidemiology discovered; P-values are in epidemi-
ologists’ statistical air, and cannot be totally eliminated from the
corpus epidemiologicum without unacceptable consequences.14

Let us start by putting Berkson’s argument into context. The
problem that he addresses, in multiple forms, is that the P-value
is defined relative only to the null hypothesis and contains no
information about an alternative. Berkson was certainly not the
first one to try to remedy this; Jerzy Neyman and Egon Pearson
introduced the notion of an alternative hypothesis and the
associated ‘power’ concept with their hypothesis test procedure
in 1933.15 But they were concerned with creating procedures
with certain long-run properties, not with measuring evidence.

Fisher objected to the hypothesis test procedure on several
grounds. First, there was its automatic, decision-making aspect,
which has attracted endless consternation and commentary
over the years, much of it fuelled by Fisher’s rhetorical heat.16

Fisher’s claim was that the scientific process was about learning,
not decision-making, and that P-values could assist the learning
process by serving as a continuous measure of evidence. This is
why Berkson’s commentary attacking the latter notion is signifi-
cant. Fisher’s second objection was Neyman and Pearson’s
introduction of the idea of a hypothesis that was an ‘alternative’
to the null. Fisher derided this because there is an infinite
number of such alternatives, and he felt that to specify one or a
subset was subjective. He claimed that this property made it
literally impossible to calculate power objectively, and his goal
was to create only objective methods:

The frequency of the first class [errors of Type I], relative to
the frequency with which the [null] hypothesis is true, is
calculable, and therefore controllable simply from the specifi-
cation of the null hypothesis. The frequency of the second
kind [of error] must depend not only on the frequency with
which rival hypotheses are in fact true, but also greatly on
how closely they resemble the null hypothesis. Such errors
are therefore incalculable…. 17

While Fisher’s objections to choosing one of many alternatives
as the one to test against are understandable, the problem is
that without an alternative hypothesis, the logic of significance
testing is incomplete. Berkson points out why. If one is in the
‘rejection’ business, one cannot reject a null hypothesis without
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something else to accept. And if one is in the ‘evidence’ business,
you cannot have evidence against a hypothesis without it being
for another, unless the hypothesis renders the observation
literally impossible.13,18

This issue can be framed another way. The claim that a
measure of evidence requires an alternative hypothesis is
equivalent to saying that the magnitude of an observed effect is
relevant to the evidence against the null hypothesis. That is, for
the same P-value, a larger effect should provide more evidence
against the null than a smaller effect. This motivates the
example Berkson presents in his Table 1, when he looks at a
hypothetical experiment to test whether a physician could
divine the sex of a child in utero. In a small experiment (n = 10),
the physician guesses right 60% of the time. In a larger experi-
ment (N = 1000), the physician guesses right 50.5% of the time.
The P-value in both cases equals 0.38. Berkson claims the small
experiment is essentially uninformative, and the larger experi-
ment confirms that the physician cannot discriminate ‘to any
significant degree’, and is ‘convincing positive evidence of the
truth of the null hypothesis within practical limits’ (ref. 1, p. 332).

It is worth spending some time on this simple example. To
modern eyes it may seem curious that Berkson does not present
what a first-year statistics student would today; confidence
limits. Neyman’s paper on confidence limits (derived from the
logic of hypothesis tests) was published 8 years before this talk,
and Berkson was clearly aware of it, referring to them in his
footnote 5. His failure to calculate them may be because he did
not see how they addressed the issue of evidence measurement.
But we will start there. The exact 95% binomial CI for 6/10
successes is 26% to 89%. For 505/1000 successes it is 47.4% to
53.6%. These provide quantitative correlates to Berkson’s
phrases ‘significant degree’ and ‘practical limits’. He is essentially
saying that a 3.6% absolute increment in discriminating ability
is of minimal practical value. This is the same as an argument
that we are rarely interested in a precise null hypothesis; 
that there is always some ‘equivalence’ region around a zero
effect. Berkson does not specify what that equivalence region is,
except to claim implicitly that it includes a 3.6% increment in
predictive ability.

Fisher probably would have agreed that in a situation like
this, estimation is the preferred approach. In the following
passage, which followed the previous quote, he claims that when
the alternative is along a quantifiable continuum, estimation is
more appropriate than testing, and that since any hypothesis
can be specified as a ‘null’ hypothesis, Type II errors can be
viewed as a form of Type I error, albeit for a non-zero null
hypothesis:

It may be added that in the theory of estimation we consider
a continuum of hypotheses each eligible as null hypothesis,

and it is the aggregate of frequencies calculated from each
possibility in turn as true—including frequencies of error,
therefore only of the ‘first kind’ without any assumptions of
knowledge a priori—which supply the likelihood function …
and other indications of the amount of information available.
The introduction … to errors of the second kind in such
arguments is entirely formal and ineffectual.17

There is an interesting split here; Fisher clearly has the technical
skills to have proposed a measure of comparative evidence if he
wanted to, but he claims to be able to meet all his scientific needs
with an informal combination of the P-value and estimation.
Berkson, on the other hand, was perhaps in better touch with
how P-values were viewed and (mis)used in the real world.
Berkson saw the need for a measure of evidence that combined
effect magnitude and precision, but it appears that he could not
quite figure out exactly how to do it. He says repeatedly, in
different ways, that the probability of the observed data under
the null hypothesis needs to be compared to the probabil-
ity under an alternative hypothesis. Yet he does not pro-
pose formally the statistic that embodies this, one that was
already established as the mathematical foundation of the
hypothesis-testing calculus, and for which Fisher could have
easily adapted his own likelihood function; the likelihood ratio
(LR).

It is instructive to look at this example through the
Likelihood/Bayesian prism. The LR is defined as the ratio of 
the data’s probability under two hypotheses. To emphasize 
its characteristic of measuring evidence for a hypothesis
(relative to another), and minimize confusion with the 
P-value, I will calculate it with the alternative hypothesis in
the numerator:

Probability of the data under the alternative hypothesis 

Probability of the data under the null hypothesis

=
Pr(D|Ha)

Pr(D|Ho)

The first question the LR forces us to answer is what alternative
hypothesis to use. As Fisher pointed out, this is not a simple
question, and what we call ‘null’ and ‘alternative’ can be arbitrary.
However, recognizing that a question about evidence requires it
to be answered, and that the evidence reported will differ
according to that answer, is a critical step forward.

The null hypothesis in this example is p = 50%, i.e. that the
physician’s guesses are no better than chance. For didactic and
computational purposes, I will change the data in the N = 1000
scenario slightly from 505 successes to 510, which will not affect
the point. The LR for various non-null hypotheses versus the
null in the two scenarios is reported in the Table.

The Table tells us quantitatively what Berkson tells us
qualitatively. We see that for the experiment with N = 10 and
six successes, the data is virtually uninformative about any
hypothesis in the range 50% to 60%, with all the LR very close
to one. The best-supported hypothesis, with a very weak LR of
1.22, is p = 60%, the hypothesis that the true success prob-
ability equals the observed proportion of 60%. (This hypothesis
must have the biggest likelihood, since the observed proportion
is the maximum likelihood estimate.) This same LR (i.e. 1.22) is
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Table Likelihood ratios for the listed alternative hypotheses versus the
null hypothesis, Ho: p = 50%. These probabilities are the chance that a
physician can guess the sex of a child in utero. See Appendix for
calculations. (Note that the ‘p’ refers to the probability of a correct
prediction, not the P-value)

Alternative hypothesis

Observed data 95% CI p = 51% p = 55% p = 60%

p̂ = 60%, N = 10 26% to 89% LR = 1.04 1.16 1.22

p̂ = 51%, N = 1000 48% to 54% 1.22 0.05 8 × 10–8
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obtained in the N = 1000 experiment for a success proportion of
51%, the maximally supported alternative when there are
510/1000 successes. The evidence against the null hypothesis in
the two experiments looks the same, but only when we
measure it for different alternative hypotheses; Ha: p = 60% in
the N = 10 case, and Ha: p = 51% in the N = 1000 case.

If we measure the evidence for the same alternative hypoth-
esis in the two experiments, the evidence is totally different; the
N = 10 experiment favours Ha: p = 60% 1.22 times more strongly
than Ho, but the N = 1000 experiment speaks overwhelmingly
against Ha: p = 60% and for Ho by a factor exceeding 100 mil-
lion! This vindicates Berkson’s intuition that when considering
the evidence against the null hypothesis, it is critical to under-
stand what the evidence is for.

Because the P-value is not comparative, it is not an evidential
measure and does not behave like one. But it is often a mono-
tonic function of the maximum LR, the LR of the hypothesis
with maximum likelihood (i.e. the MLE) versus the null. For
example, when the statistic of interest is Gaussian, the
maximum LR equals exp(Z2/2) and the P-value value equals 
2 (1 – Φ(|Ζ|) (i.e. twice the tail area), where Z = standard Z-score
and Φ(|Ζ|) =the cumulative normal distribution from –∞ to |Ζ|.
This monotonic relationship tells us that the fixed sample-size
P-value is a transformation of a measure (the LR) that compares
the likelihood of the null hypothesis to a post-hoc, data-sug-
gested hypothesis, i.e. the MLE. Thus, a fixed sample-size 
P-value might be regarded as a surrogate for a kind of evidential
measure, but it is a measure that violates a prime dictum of
scientific research: to pre-specify hypotheses. A true measure of
evidence uses a pre-specified alternative not dictated by the data.

Operationally, how do we pre-specify alternative hypotheses?
The easiest way is to choose a single non-null parameter value,
e.g. the ‘minimum important difference’. But the alternative
hypothesis typically encompasses more than one non-null para-
meter value, e.g. ‘Ha = treatment difference greater than zero’.
In those situations, measuring the likelihood ratio for Ha versus
Ho requires that we average the likelihood function over all
values of the treatment difference included in the alternative
hypothesis. The resulting LR is called a weighted likelihood
ratio. If a Bayesian prior probability distribution is used as the
averaging function, the resulting LR is called the ‘Bayes
Factor’.19,20,21 The reason for the ‘Bayes factor’ name is that
this ratio appears in Bayes theorem as the factor that multiplies
the prior odds of the truth of two hypotheses to generate their
posterior odds of being true.

Interestingly, if we use a pre-specified likelihood averaging
function, many issues that pose a problem for conventional
statistics vanish. In particular, the problem of ‘multiple looks’
disappears, as the probability of a Type I error is bounded by
1/LRt, where LRt = the threshold degree of evidence to stop a
study.13,22 The problem of measuring evidence for a composite
alternative hypothesis (i.e. one that encompasses more than
one parameter value) is therefore analogous to that associated
with exploration of multiple subgroups. If we go on a data-
dredging expedition and report only which subgroup effects are
significant, we are certain to produce a welter of false findings.
But if we pre-specify which subgroups will be analysed, the
chance of a spurious claim is greatly reduced. Similarly, if we
pre-specify a weight function over a range of simple alternatives,
and then measure the evidence comparatively, we can look at

the data as frequently as we want without fear of an
unbounded Type I error. If we find such pre-specification
difficult, then any resulting problems should not be viewed as
caused by our exploration or our evidential measure, but rather
by our weak background knowledge.20

Berkson also brings to our attention that more complex
features of the data other than just a simple effect measure can
affect the alternative we consider. In the Drosophila example, he
points out that by itself, the low P-value for the test of linearity
was meaningless in the absence of a competing explanation for
the observed pattern. Interestingly, Fisher seized on this in his
rebuttal to Berkson’s article, reprinted here, to claim that
Berkson had ignored the example’s biological nuances.23 But a
close reading of Berkson’s piece shows that Fisher did not fairly
represent him; Berkson does not dismiss the non-linearity, but
rather states that the meaning of the low P-value depended on
exactly which explanation for the non-linearity was enter-
tained, and it was only such explanations that would justify
rejection of the null hypothesis, not the small P-value alone. He
and Fisher are in agreement about the importance of searching
for those explanations; they differ only on the interpretation of
the P-value in the absence of one.

Using the relationship between the fixed sample size P-value
and the maximum LR, an idiosyncratic view is that the P-value is
a kind of evidential measure, but an extraordinarily fickle one;
flitting from one alternative hypothesis to another wherever the
data wind blows. Unfortunately, in their traditional guise, P-values
obscure the idea that true evidence is relative, and that it is
literally nonsensical to speak of evidence against the null
hypothesis without considering what it is for. Even without a
modern statistical perspective or tools, Berkson saw this clearly,
and communicated it in an eminently readable and entertaining
way. The International Journal of Epidemiology is to be applauded
for bringing this article again to our collective attention, and I
hope that those who see it 60 years hence will not still be
lamenting its unlearned lessons.

Appendix
Calculations underlying the Table.

Where Bin(N, x, p) = Binomial probability for sample size = N,
successes = x and success probability = p.

For the first entry in the Table (LR = 1.04), these parameters
are: N = 10, x = 6, pa = 0.51

LR for the other entries are calculated similarly, using the
reported values of N, x, and pa.
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